The effect of an external magnetic force on cell adhesion and proliferation of magnetically labeled mesenchymal stem cells
نویسندگان
چکیده
BACKGROUND As the strategy for tissue regeneration using mesenchymal stem cells (MSCs) for transplantation, it is necessary that MSCs be accumulated and kept in the target area. To accumulate MSCs effectively, we developed a novel technique for a magnetic targeting system with magnetically labeled MSCs and an external magnetic force. In this study, we examined the effect of an external magnetic force on magnetically labeled MSCs in terms of cell adhesion and proliferation. METHODS Magnetically labeled MSCs were plated at the bottom of an insert under the influence of an external magnetic force for 1 hour. Then the inserts were turned upside down for between 1 and 24 hours, and the number of MSCs which had fallen from the membrane was counted. The gene expression of MSCs affected magnetic force was analyzed with microarray. In the control group, the same procedure was done without the external magnetic force. RESULTS At 1 hour after the inserts were turned upside down, the average number of fallen MSCs in the magnetic group was significantly smaller than that in the control group, indicating enhanced cell adhesion. At 24 hours, the average number of fallen MSCs in the magnetic group was also significantly smaller than that in control group. In the magnetic group, integrin alpha2, alpha6, beta3 BP, intercellular adhesion molecule-2 (ICAM-2), platelet/endothelial cell adhesion molecule-1 (PECAM-1) were upregulated. At 1, 2 and 3 weeks after incubation, there was no statistical significant difference in the numbers of MSCs in the magnetic group and control group. CONCLUSIONS The results indicate that an external magnetic force for 1 hour enhances cell adhesion of MSCs. Moreover, there is no difference in cell proliferation after using an external magnetic force on magnetically labeled MSCs.
منابع مشابه
Cytotoxic Effects of Digoxin on Mesenchymal Stem Cells: An in Vitro Study
Introduction: Cardiac glycosides such as digoxin or digitoxin are the natural products that are traditionally used to increase cardiac contractile force in patients with heart failure and cardiac arrhythmias. It has been shown that digoxin can directly inhibit the cell proliferation and lead to cell apoptosis. Present study was conducted to analyze the effect of digoxin in the cohorts of ...
متن کاملThe effect of mesenchymal stem cell ‑conditioned medium on the proliferation of cancer cell lines, A549 and JEG3
Background: Cancer is a significant public health problem. Some studies indicated the anti-cancer effects of mesenchymal stem cells. These effects are related to stem cells or secretory mediator of them. The aim of this study was to evaluate the impact of condition medium of mesenchymal stem cells on A549 and JEG3 cancer cell lines. Methods: In an experimental study, A549 and JEG3 cell lines p...
متن کاملMesenchymal Stem Cells Do Not Suppress Lymphoblastic Leukemic Cell Line Proliferation
Background: Several studies have demonstrated the immunosuppresive effects of mes-enchymal stem cells (MSCs) in allogeneic or mitogenic interactions. Cell-cell contact inhibition and secretion of suppressive soluble factors have been suggested in this re-gard. Objective: To investigate if adipose derived MSCs could inhibit Jurkat lym-phoblastic leukemia T cell proliferation during coculture. Me...
متن کاملEffect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture
Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...
متن کاملEffects of BIO on proliferation and chondrogenic differentiation of mouse marrow-derived mesenchymal stem cells
In vitro expansion of mesenchymal stem cell (MSCs) into large number is necessary for their application in cell-based treatment of articular cartilage defects. On the other hand, some studies have indicated that BIO (6-Bromoindirubin-3-Oxime) possesses mitogenic effects on cell culture. The objective of the present study was to examine the effect of BIO on in vitro expansion and chondrogenic di...
متن کامل